Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled variations varying from 1.5 to 70 billion parameters to build, experiment, and properly scale your generative AI ideas on AWS.
In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to deploy the distilled variations of the designs too.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that uses support finding out to improve reasoning capabilities through a multi-stage training procedure from a DeepSeek-V3-Base foundation. An essential identifying feature is its support learning (RL) step, which was utilized to refine the model's actions beyond the basic pre-training and tweak procedure. By including RL, DeepSeek-R1 can adapt better to user feedback and goals, eventually enhancing both importance and clarity. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) approach, meaning it's geared up to break down intricate queries and factor through them in a detailed way. This directed thinking procedure allows the design to produce more precise, transparent, and detailed answers. This model combines RL-based fine-tuning with CoT capabilities, aiming to produce structured actions while focusing on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has actually caught the market's attention as a flexible text-generation design that can be incorporated into different workflows such as agents, rational reasoning and data interpretation tasks.
DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture permits activation of 37 billion specifications, making it possible for effective reasoning by routing inquiries to the most relevant professional "clusters." This approach enables the model to concentrate on various problem domains while maintaining general performance. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge instance to deploy the design. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the thinking capabilities of the main R1 design to more effective architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and wiki.dulovic.tech 70B). Distillation describes a procedure of training smaller sized, more efficient designs to simulate the behavior and thinking patterns of the bigger DeepSeek-R1 design, utilizing it as an instructor design.
You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we advise deploying this model with guardrails in location. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, prevent damaging material, and assess models against essential safety criteria. At the time of writing this blog site, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop several guardrails tailored to different use cases and apply them to the DeepSeek-R1 design, enhancing user experiences and standardizing safety controls across your generative AI applications.
Prerequisites
To release the DeepSeek-R1 design, you require access to an ml.p5e circumstances. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To request a limitation boost, create a limitation boost demand and reach out to your account group.
Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) consents to utilize Amazon Bedrock Guardrails. For instructions, see Set up authorizations to use guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails allows you to introduce safeguards, prevent harmful content, and examine designs against key security requirements. You can implement security measures for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to examine user inputs and model reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.
The basic flow involves the following steps: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After getting the model's output, another guardrail check is used. If the output passes this final check, it's returned as the final result. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following areas show reasoning utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following actions:
1. On the Amazon Bedrock console, choose Model brochure under Foundation models in the navigation pane.
At the time of composing this post, you can utilize the InvokeModel API to conjure up the model. It doesn't support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a supplier and choose the DeepSeek-R1 design.
The design detail page offers important details about the design's capabilities, prices structure, and execution standards. You can discover detailed use directions, consisting of sample API calls and code bits for integration. The model supports numerous text generation jobs, including material creation, code generation, and concern answering, utilizing its reinforcement learning optimization and CoT thinking capabilities.
The page also includes release choices and to assist you get started with DeepSeek-R1 in your applications.
3. To start utilizing DeepSeek-R1, pick Deploy.
You will be prompted to set up the deployment details for DeepSeek-R1. The model ID will be pre-populated.
4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters).
5. For Variety of instances, go into a variety of circumstances (in between 1-100).
6. For example type, pick your circumstances type. For optimal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is recommended.
Optionally, you can configure sophisticated security and facilities settings, including virtual personal cloud (VPC) networking, service role consents, and file encryption settings. For most utilize cases, the default settings will work well. However, for production implementations, you may wish to evaluate these settings to line up with your organization's security and compliance requirements.
7. Choose Deploy to begin utilizing the design.
When the deployment is total, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock playground.
8. Choose Open in play ground to access an interactive user interface where you can experiment with various triggers and adjust design specifications like temperature level and maximum length.
When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimum results. For instance, material for inference.
This is an excellent way to explore the model's reasoning and text generation abilities before incorporating it into your applications. The play ground supplies instant feedback, assisting you comprehend how the model responds to different inputs and letting you tweak your prompts for optimal results.
You can rapidly evaluate the model in the playground through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run reasoning using guardrails with the released DeepSeek-R1 endpoint
The following code example shows how to carry out reasoning using a released DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have produced the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime customer, sets up reasoning criteria, and sends a demand to create text based on a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML services that you can release with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your information, and deploy them into production using either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart uses two convenient techniques: utilizing the user-friendly SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both techniques to help you select the method that best fits your needs.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following steps to release DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, select Studio in the navigation pane.
2. First-time users will be triggered to produce a domain.
3. On the SageMaker Studio console, pick JumpStart in the navigation pane.
The model browser displays available designs, with details like the company name and model capabilities.
4. Look for DeepSeek-R1 to view the DeepSeek-R1 design card.
Each model card reveals essential details, consisting of:
- Model name
- Provider name
- Task category (for instance, Text Generation).
Bedrock Ready badge (if suitable), showing that this design can be registered with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to conjure up the design
5. Choose the design card to see the design details page.
The design details page includes the following details:
- The model name and company details. Deploy button to release the model. About and Notebooks tabs with detailed details
The About tab consists of important details, such as:
- Model description. - License details.
- Technical specifications.
- Usage standards
Before you deploy the design, it's recommended to review the design details and license terms to confirm compatibility with your use case.
6. Choose Deploy to continue with release.
7. For Endpoint name, use the immediately produced name or create a customized one.
- For Instance type ¸ select a circumstances type (default: ml.p5e.48 xlarge).
- For Initial instance count, go into the number of circumstances (default: 1). Selecting suitable circumstances types and counts is crucial for expense and efficiency optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time inference is selected by default. This is optimized for sustained traffic and low latency.
- Review all configurations for precision. For this design, we strongly advise adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
- Choose Deploy to release the model.
The deployment process can take several minutes to finish.
When implementation is total, your endpoint status will alter to InService. At this point, the design is all set to accept inference demands through the endpoint. You can keep track of the release development on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the deployment is total, you can conjure up the model using a SageMaker runtime customer and incorporate it with your applications.
Deploy DeepSeek-R1 utilizing the SageMaker Python SDK
To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the necessary AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to release and utilize DeepSeek-R1 for inference programmatically. The code for deploying the design is offered in the Github here. You can clone the note pad and range from SageMaker Studio.
You can run additional demands against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and execute it as displayed in the following code:
Clean up
To avoid unwanted charges, complete the actions in this area to tidy up your resources.
Delete the Amazon Bedrock Marketplace release
If you deployed the model utilizing Amazon Bedrock Marketplace, complete the following actions:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, pick Marketplace deployments. - In the Managed releases section, find the endpoint you wish to erase.
- Select the endpoint, and on the Actions menu, pick Delete.
- Verify the endpoint details to make certain you're erasing the right release: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart design you released will sustain expenses if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and release the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies construct ingenious solutions utilizing AWS services and sped up compute. Currently, he is focused on establishing techniques for fine-tuning and enhancing the reasoning performance of big language models. In his free time, Vivek takes pleasure in treking, watching movies, and trying different foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is an Expert Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.
Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about developing options that help consumers accelerate their AI journey and unlock organization worth.